翻訳と辞書
Words near each other
・ Whitford, Devon
・ Whitford, Flintshire
・ Whitford, New Zealand
・ Whitford, Pennsylvania
・ Whitford/St. Holmes
・ Whitfords Avenue
・ Whitfords railway station
・ Whitfords Volunteer Sea Rescue Group
・ Whitgift
・ Whitgift Centre
・ Whitgift Foundation
・ Whitgift School
・ Whitgift, East Riding of Yorkshire
・ Whitgreave
・ Whithair v A-G
Whitham equation
・ Whitharral Independent School District
・ Whitharral, Texas
・ Whithed
・ Whither Canada?
・ Whither Must I Wander
・ Whither Shall I Wander?
・ Whither Socialism?
・ Whither Thou Goest
・ Whithorn
・ Whithorn (Parliament of Scotland constituency)
・ Whithorn F.C.
・ Whithorn Priory
・ Whithorn railway station
・ Whitianga


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Whitham equation : ウィキペディア英語版
Whitham equation
In mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves:
:
\frac
+ \alpha \eta \frac
+ \int_^ K(x-\xi)\, \frac\, \text\xi
= 0.

This integro-differential equation for the oscillatory variable ''η''(''x'',''t'') is named after Gerald Whitham who introduced it as a model to study breaking of non-linear dispersive water waves in 1967.
For a certain choice of the kernel ''K''(''x'' − ''ξ'') it becomes the Fornberg–Whitham equation.
==Water waves==

* For surface gravity waves, the phase speed ''c''(''k'') as a function of wavenumber ''k'' is taken as:〔
::
c_\text(k) = \sqrt\, \tanh(kh)},
while \alpha_\text = \frac \sqrt},
:with ''g'' the gravitational acceleration and ''h'' the mean water depth. The associated kernel ''K''ww(''s'') is:〔
::
K_\text(s) = \frac \int_^ c_\text(k)\, \text^\, \textk.

* The Korteweg–de Vries equation emerges when retaining the first two terms of a series expansion of ''c''ww(''k'') for long waves with :〔
::
c_\text(k) = \sqrt \left( 1 - \frac k^2 h^2 \right),

K_\text(s) = \sqrt \left( \delta(s) + \frac h^2\, \delta^(s) \right),

\alpha_\text = \frac \sqrt},

:with ''δ''(''s'') the Dirac delta function.
* Bengt Fornberg and Gerald Whitham studied the kernel ''K''fw(''s'') – non-dimensionalised using ''g'' and ''h'':
::K_\text(s) = \frac12 \nu \text^ and c_\text = \frac, with \alpha_\text=\frac32.
:The resulting integro-differential equation can be reduced to the partial differential equation known as the Fornberg–Whitham equation:〔
::
\left( \frac - \nu^2 \right)
\left(
\frac
+ \frac32\, \eta\, \frac
\right)
+ \frac
= 0.

:This equation is shown to allow for peakon solutions – as a model for waves of limiting height – as well as the occurrence of wave breaking (shock waves, absent in e.g. solutions of the Korteweg–de Vries equation).〔〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Whitham equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.